11

Government of Puducherry Directorate of School Education Competitive Examination for Empanelment of Guest Lecturers-2019

QUESTION BOOKLET

ROLL NO:	SUBJECT: PHYSICS

Time: 2:00 Hours

Total Marks: 90

INSTRUCTIONS TO CANDIDATES

- 1) Write Roll Number in the space provided in this Question Booklet above.
- The Candidate should check the question paper that question paper consists of all the pages and that it is not torn.
- 3) Please write the Roll No. etc., on the OMR sheet using Black Ball point pen only.
- 4) The candidate shall use only "BLACK BALL POINT PEN" for marking the answers.
- There are 90 questions. For every correct answer 1 (One) mark will be awarded and for each wrong answer 0.25 mark will be deducted.
- 6) Use of eraser/ whitener/ correction fluid is prohibited on OMR answer sheets.
- 7) Use of calculators, cell phones, logarithmic table, electronic gadgets etc., is strictly prohibited.
- 8) For any rough work, use the rough page given at the end of the Question Booklet.
- 9) The candidate has to deposit the original copy of OMR sheet along with the Hall Ticket after the completion of examination and may carry the duplicate OMR (impression) sheet for reference.
- 10) No candidate is allowed to leave the examination centre premises till the completion of the entire examination process.
- 11) Please avoid marking of answers on Question Booklet.
- 12) The questions in English version alone will be taken as authentic though questions are given in other languages for the convenience of the candidates.

	PHYSICS				
1.	The moment of inertia of a rod about an axis through its centre and perpendicular to it is $\frac{1}{12}ML^2$ (where				
	M is the mass and L the length of the rod). The rod is bent in the middle so that the two harves make an angle of 60°. The moment of inertia of the bent rod about the same axis would be.				
	(a) $\frac{1}{48}ML^2$ (b) $\frac{1}{12}ML^2$ (c) $\frac{1}{24}ML^2$ (d) $\frac{ML^2}{8\sqrt{3}}$				
2	A boat at anchor is rocked by waves whose crests are 100 m apart and velocity is 25 m/s. The				
2.	boat bounces up one in every.				
	(a) 2500 s (b) 75 s (c) 4 s (d) 0.25 s				
3.	By sucking through a straw, a student can reduce the pressure in his lungs to 750 mm of Hg				
	(density = 13.6 g/cm^2). Using the straw, he can drink water from a glass up to maximum depth of.				
	(a) 10 cm (b) 75 cm (c) 13.6 cm (d) 1.36 cm (d) 1.36 cm				
4.	Two parallel large thin metal sheets have equal surface charge densities ($\sigma = 26.4 \times 10^{-12} C/m^2$) of				
	opposite signs. The electric field between these sheets is. (a) 1.5 N/C (b) $1.5 \times 10^{-10} \frac{N}{2}$ (c) 3 N/C (d) 3×10^{-10}				
	(a) 1.5 N/C (b) $1.5 \times 10^{-10} \frac{N}{c}$ (c) 3 N/C (d) 3×10^{-10}				
	N/C				
5.	A wire mesh consisting of very small squares is viewed at a distance of 8 cm through a magnifying				
	converging lens of focal length 10 cm, kept close to the eye. The magnification produced by the lens is. (a) 5 (b) 8 (c) 10 (d) 20				
-	(a) 5 (b) 8 (c) 10 (d) 20 Hard X-rays for the study of fractures in bones should have a minimum wavelength of 10^{-11} m. The				
6.	accelerating voltage for electrons in X-ray machine should be.				
	(a) $< 124 \text{ k V}$ (b) $> 124 \text{ k V}$ (c) between 60 k V and 70 k V (d) = 100				
	k V				
7.	A lens is made of flint glass (refractive index = 1.5). When the lens is immersed in a liquid of refractive				
	index 1.25, the focal length.				
	(a) increases by a factor of 1.25				
	(b) increases by a fractor of 2.5				
	(c) increases by a factor of 1.2				
0	(d) decreases by a factor of 1.2 The voltage of clouds is $4 \times 10^6 V$ with respect to ground. In a lightning strike lasting 100 ms, a charge				
8.	of 4 C is delivered to the ground. The power of lightning strike is.				
	(a) 160 MW (b) 80 MW (c) 20 MW (d) 500 k W				
9	A point source emits sound equally in all directions in a non-absorbing medium. Two points P and Q				
	are at distance of 2m and 3m respectively from the source. The ratio of the intensities of the waves at F				
	and Q is.				
	(a) 9:4 (b) 2:3 (c) 3:2 (d) 4:9				
10	0. What a p-n junction diode is reverse biased, then.				
	(a) no current flows				
	(b) the depletion region is increased				
	(c) the depletion region is reduced (d) the height of the notantial begins is reduced				
1	(d) the height of the potential barrier is reduced1. The circuit given below represents which of the logic operations?				
1	1. The chedit given below represents which of the logic operations.				
	Investor				

(a) AND (b) NOT (d) NOR (c) OR 12. The spatial distribution of the electric field due to charges (A, B) is shown in the figure. Which one of the following statements is correct?

- (a) A is +ve and B –ve and |A| > |B|
- (b) A is –ve and B+ve; |A| = |B|
- (c) Both are +ve but A > B
- (d) Both are -ve but A > B
- 13. Circular loop of a wire and a long straight wire carry currents Ic and Ie, respectively as shown in the figure. Assuming that these are placed in the same plane. The magnetic field will be zero at the centre of the loop when the separation H is.

14. If a street light of mass M is suspended from the end of uniform rod of length L in different possible patterns as shown in the figure, then.

- (a) pattern A is more sturdy
- (b) pattern B is more sturdy
- (c) pattern C is more sturdy
- (d) all will have the same sturdiness
- 15. ²³⁸₉₂U has 92 protons and 238 nucleons. It decays by emitting an alpha particle and becomes.

(b) 234Th

(c) $^{235}_{92}U$

(d) ²³⁷₉₃Np

16. The fossil bone has a 14 C: 12 C ratio, which is $\left[\frac{1}{16}\right]$ of that in a living animal bone. If the half-life of 14 C is 5730 years, then the age of the fossil bone is.

(a) 11460 years

(b) 17190 years

(c) 22920 years

(d) 45840 years

- 17. Which one of the following is a possible nuclear reaction?

 - (a) ${}^{10}_{5}B + {}^{4}_{2}He \rightarrow {}^{13}_{7}N + {}^{1}_{1}H$ (b) ${}^{13}_{11}Na + {}^{1}_{1}H \rightarrow {}^{20}_{10}Ne + {}^{4}_{2}He$ (c) ${}^{239}_{93}Np \rightarrow {}^{239}_{94}Pu + \beta^{-} + \bar{v}$

(d) ${}^{11}_{7}N + {}^{1}_{1}H \rightarrow {}^{12}_{6}C + \beta^{-} + v$

18. Two turning forks P and Q when set vibrating, give 4 beats/sec. If a prong of the fork P is filed, the beats are reduced to 2/s. What is frequency of P, if that of Q is 250 Hz?

(a) 246 Hz (b) 250 Hz (c) 254 Hz (d) 252 Hz

19. A bimetallic strip consists of metals X and Y. It is mounted rigidly at the base as shown. The metal X has a higher coefficient of expansion compared to that for metal Y. When bimetallic strip is placed in a cold bath.

- (a) it will bend towards the right
- (b) it will bend towards the left
- (c) it will not bend but shrink
- (d) it will neither bend nor shrink
- 20. A light emitting diode (LED) has a voltage drop of 2 V across it and passes a current of 10mA. When it operates with a 6 V battery through a limiting resistor R. The value of R is.
 - (a) $40 \text{ k}\Omega$ (b) $4 \text{ k}\Omega$
- (c) 200Ω
- (d) 400Ω
- 21. The minimum potential difference between the base emitter required to switch a silicon transistor 'ON' is approximately.
 - (c) 5 V (d) 4.2 V (b) 3 V (a) 1 V
- 22. Given below is a circuit diagram of an AM demodulator for good demodulation of AM signal of carrier frequency f, the value of RC should be.

- 23. In CGS system the magnitude of the force is 100 dynes. In another system where the fundamental physical quantities are kilogram, metre and minute, the magnitude of the force is.
 - (a) 0.036
- (b) 0.36
- (c) 3.6
- · (d) 36
- 24. A particle (A) is dropped from a height and another particle (B) is thrown in horizontal direction with speed of 5m/sec from the same height. The correct statement is.
 - (a) Both particles will reach at ground simultaneously
 - (b) Both particles will reach at ground with the same
 - (c) Particle(A) will reach at ground first with respect to particle (B)
 - (d) Particle (B) will reach at ground first with respect to particle (A)
- 25. An aircraft executes a horizontal loop with a speed of 150 m/s with its, wings banked at an angle of 12° . the radius of the loop is $(g = 10 \text{ m/s}^2)$.
 - (a) 10.6 km
- (b) 9.6 km (c) 7.4 km (d) 5.8 km
- 26. A block of metal weighing 2 kg is resting on a frictionless plane. It is struck by a jet releasing water at 1 kg/sec and at a speed of 5 m/sec. The initial acceleration of the block will be. a rate of
 - (a) 2.5 m/sec^2
- (b) 5.0 m/sec²
- (c) 10 m/sec² (d) None of the above
- 27. A car is moving along a straight horizontal road with a speed v_0 . If the coefficient of friction between the tyres and the road is μ , the shortest distance in which the car can be stopped is. (a) $\frac{v_0^2}{2\mu g}$ (b) $\frac{v_0}{\mu g}$ (c) $\left(\frac{v_0}{\mu g}\right)^2$ (d) $\frac{v_0}{\mu}$

- 28. A spring of force constant 10 N/m has an initial stretch 0.20 m. In changing the stretch to 0.25 m, the increase in potential energy is about.
 - (a) 0.1 joule
- (b) 0.2 joule
- (c) 0.3 joule
- (d) 0.5 joule
- 29. Mass M is divided into two parts xM and (1 x)M. For a given separation, the value of x for which the gravitational attraction between the two pieces becomes maximum is.

1	3		
(a) $\frac{1}{2}$	(b) $\frac{3}{5}$	(c) 1	(d) 2
-	5		()

30. Steel and copper wires of the same length are stretched by the same weight one after the other. Young's modules of steel and copper are $2 \times 10^{11} \text{ N/m}^2$ and $1.2 \times 10^{11} \text{ N/m}^2$. The ratio of increase in length.

(a) $\frac{2}{5}$ (b) $\frac{3}{5}$ (c) $\frac{5}{4}$ (d)

31. The force required to separate two glass plates of area $10^{-2}m^2$ with a film of water 0.05 mm thick between them is (surface tension of water is $70 \times 10^{-3} \text{N/m}$).

(a) 28 N (b) 14 N (c) 50 N (d) 38 N

32. A body of density d₁ is counterpoised by Mg of weights of density d₂ in air of density d. Then the true mass of the body is.
(a) M
(b) M (1 - d/d₂)
(c) M (1 - d/d₁)
(d) M (1-d/d₂)/(1-d/d₁)

33. A uniform metal rod is used as a bar pendulum. If the room temperature rises by 10°C, and the coefficient of linear expansion of the metal of the rod is 2 × 10⁻⁶ per °C, the period of the pendulum will have percentage increase of.

(a) -2×10^{-3} (b) -1×10^{-3} (c) 2×10^{-3} (d) 1×10^{-3}

34. Suppose ideal gas equation follows VP^3 = constant. Initial temperature and volume of the gas are T and V respectively. If gas expand to 27V, then its temperature will become.

(a) T (b) 9T (c) 27T (d) T/9

35. If ΔQ and ΔW represents the heat supplied to the system and the work done on the system respectively, then the first law of thermodynamics can be written as.

(a) $\Delta Q = \Delta U + \Delta W$ (b) $\Delta Q = \Delta U - \Delta W$ (c) $\Delta Q = \Delta W - \Delta U$ (d) $\Delta Q = -\Delta W - \Delta U$

Where ΔU is the internal energy.

36. The thermal conductivity of a material in CGS system is 0.4. In steady state, the rate of flow of heat 10 cal/sec-cm², then the thermal gradient will be.

(a) $10^{\circ}C/cm$ (b) $12^{\circ}C/cm$ (c) $25^{\circ}C/cm$ (d) $20^{\circ}C/cm$

37. The amplitude and the time period in a SHM is 0.5 cm and 0.4 sec respectively. If the initial phase is $\pi/2$ radian, then the equation of SHM will be.

(a) $y = 0.5 \sin 5\pi t$ (b) $y = 0.5 \sin 4\pi t$ (c) $y = 0.5 \sin 2.5\pi t$ (d) $y = 0.5 \cos 5\pi t$

38. In a sinusoidal wave, the time required for a particular point to move from maximum displacement to zero displacement is 0.170 second. The frequency of the wave *i*.

(a) 1.47 Hz (b) 0.36 Hz (c) 0.73 Hz (d) 2. 94 Hz

39. Three rings each of mass M and radius R are arranged as shown in the figure. The moment of inertia of the system about YY' will be.

(a) $3 MR^2$ (b) $\frac{3}{2} MR^2$ (c) $5 MR^2$ (d) $\frac{7}{2} MR^2$
40. The capacity and the energy stored in a parallel plate condenser with air between its plates are respectively C_o and W_o . If the air is replaced by glass (dielectric constant = 5) between the plates, the capacity of the plates and the energy stored in it will respectively be.
(a) $5C_o$, $5W_o$ (b) $5C_o$, $\frac{W_o}{5}$
C_0 C_0 C_0 C_0 C_0
(c) $\frac{c_o}{5}$, $5W_o$ (d) $\frac{c_o}{5}$, $\frac{W_o}{5}$
41. A body of mass 5 gm is executing SHM about a point with amplitude 10 cm. Its maximum velocity is 100 cm/sec. Its velocity will be 50 cm/sec at a distance.
(a) 5 (b) $5\sqrt{2}$ (c) $5\sqrt{3}$ (d) $10\sqrt{2}$
42. At which temperature the speed of sound in hydrogen will be the same as that of speed of sound in
oxygen at 100°C.
(a) -148°C (b) -212.5°C (c) -317.5°C (d) -249.7°C 43. If the initial velocity of a projectile be doubled, keeping the angle of projection same, the maximum
height reached by it will. (a) Remain the same (b) Be doubled
(c) Be quadrupled (d) Be halved
44. Force acting upon a charged particle kept between the plates of a charged condenser is F. If one plate
of the condenser is removed, then the force acting on the same particle will become.
(a) 0 (b) F/2 (c) F (d) 2F
45. Masses of three wires of copper are in the ratio of 1: 3: 5 and their lengths are in the ratio of 5: 3: 1.
The ratio of their electrical resistances are.
(a) 1: 3: 5 (b) 5: 3: 1
(c) 1: 15: 125 (d) 125: 15: 1
46. Stern-Gerlach experiment is important because it gives experimental verification of
(a) quantization of energy (b) orbital motion of electron
(c) electron spin (d) sommerfeld model of atom
47. Larmor frequency is the frequency of precession of
(a) orbital angular momentum L about the external magnetic field, B
(b) spin angular momentum, S about the external magnetic field, B
(c) total angular momentum J about the external magnetic field, B
(d) orbital angular momentum, L about the total angular momentum J
48. The half-width of gain profile of a He-Ne laser is $2x10^{-3}$ nm. If the length of the cavity is 30 cm, how
many longitudinal modes can be excited? The emission wavelength is 6328Å.
(1) (
(a) 1 (b) 2 (c) 3 (d) 4 49. The ratio between most probable speed and root mean square speed of a gas molecule is
(a) $\sqrt{\frac{3}{2}}$ (b) $\sqrt{\frac{3}{8\pi}}$ (c) $\sqrt{\frac{2}{3}}$ (d) $\sqrt{\frac{8}{3\pi}}$
50. Which one of the follwiong is correct?
(a) $\frac{E_{\lambda}}{T^4} = \text{constant}$ (b) $\frac{E_{\lambda}}{T^5} = \text{constant}$ (c) $\frac{E_{\lambda}}{T^2} = \text{constant}$ (d) $\frac{E_{\lambda}}{T} = \text{constant}$
51. A mass m of water at T1K is isobarically and adiabatically mixed with an equal mass of water at T2K
the entropy change of the universe is
(a) $2\text{mC}_p \ln \frac{(T_1 + T_2)/2}{\sqrt{T_1 T_2}}$ (b) $2\text{m} \ln \frac{(T_1 + T_2)/2}{\sqrt{T_1 T_2}}$ (c) $2\text{C}_p \ln \frac{(T_1 + T_2)/2}{\sqrt{T_1 T_2}}$ (d) 2mC_p
52. If in an elastic collision, a massive particle collides against a lighter one at rest
(a) it can never bounce back along its original path
(b) it may bounce back along its original path

(a) the term of the
(c) the two particles move at right angles to each other after collision
(a) none of the above
53. From the nozzle of rocket 100 kg of gases are exhausted per sec with a velocity of 1000 m/sec. what
force (thrust) does the gas exert on the rocket?
(a) 100 kg/sec (b) 10^{5} N (c) 10^{3} N
54. The length of a rod, of length 5m in a frame of reference which is moving with 0.6 c velocity in a direction making 30° angle with the rod is nearly
direction making 30° angle with the rod is nearly
(a) 4.3 m (b) 3.4 m (c) 2.43 m (d) 2.34 m
55. Which of the following relations:
55. Which of the following relations is correct for modulus of rigidity η bulk modulus K and poisson's ratio σ?
K-2n $3V-2n$
(a) $\sigma = \frac{K-2\eta}{6K+2\eta}$ (b) $\sigma = \frac{3K-2\eta}{K+2\eta}$ (c) $\sigma = \frac{3K-2\eta}{6K+2\eta}$ (d) $\sigma = \frac{K-2\eta}{K+2\eta}$
56. The depletion region is created by $6K+2\eta$
(a) ionization (b) diffusion (c) recombination (d) a, b and c
57. Where will be the position of the Fermi level of the n-type material when $N_D = N_A$ (a) E_C (b) E_V (c) $E_C + E_V$
(b) E _V (c) $\frac{1}{2}$ (d) none of these
with-bridge oscillators are based on
(a) positive feedback (b) negative feedback (c) piezoelectric effect (d) high gain
59. For an ideal dielectric, polarization \vec{P} is given by (c) piezoelectric effect (d) high gain
(a) $\vec{P} = \mathcal{E}_0 \vec{E}$ (b) $P = (K - 1)\mathcal{E}_0 \vec{E}$ (c) $(K + 1)\mathcal{E}_0 \vec{E}$ (d) $\vec{P} = \frac{\mathcal{E}_0}{K - 1} \vec{E}$
60. The dipole moment of water male A : 62 and 30.
60. The dipole moment of water molecule is 6.2×10^{-30} C-m at 20°C. The polarizability α is (a) 3.17×10^{-39} C-m ² /V (b) 3.17×10^{-37} C = 2^{-2} W
(a) $3.17 \times 10^{-39} \text{ C-m}^2/\text{V}$ (b) $3.17 \times 10^{-37} \text{ C-m}^2/\text{V}$ (c) $3.17 \times 10^{-35} \text{ C-m}^2/\text{V}$ (d) $3.17 \times 10^{-33} \text{ C-m}^2/\text{V}$
61 A girguit particle $(d) 3.17 \times 10^{-33} \text{ C-m}^2/\text{V}$
61. A circuit containing resistor R ₁ inductor L ₁ and capacitor C ₁ connected in series gives resonance at the
and the frequency
(a) 21 (b) $f/2$ (c) f
62. For dispersive medium, group velocity (v_g) and phase velocity (v_p) are related as
(a) $v_g - v_p + \lambda \frac{d}{d\lambda}$ (b) $v_g = v_p - \lambda \frac{dv_p}{d\lambda}$ (c) $v_g = v_p + \frac{1}{2} \frac{dv_p}{d\lambda}$ (d) $v_c = v_p - \frac{1}{2} \frac{dv_p}{d\lambda}$
63. In Newton's ring experiment, the diameters of the bright rings are proportional to the
(a) natural number (b) square root of
(c) square root of all
64. Interference pattern is produced by two
64. Interference pattern is produced by two point sources S ₁ and S ₂ on a plane perpendicular to the line joining S ₁ and S ₂ . What will be the shape of interference from S ₂
(a) statistics of the shape of interference fringes?
65. When the distance between two mirrors in Michelson interferometer decreased is
(a) the fininge pattern appears to collapse at the centre
(b) the fringe pattern expands
(c) the fringe pattern remains stable
(d) the shape of the fringe changes
66. An unpolarized light is incident on a glass plate placed in air at polarizing angle. The reflected light is
The plant of the p
(a) plant polarized with electric vector parallel to the plane of incidence
(c) partially polarized having more electric field vectors perpendicular to the plane of incidence
retar vectors perpendicular to the plane of incidence

(d) partially polarized having more electric field	vectors parallel to the plane of incidence			
(d) partially polarized in this inertial (d) partial (d) parti	describe the motion of a solid cylinder rolling without			
slipping on a inclined plane is				
(b) 2	(c) 3 (d) 4			
(a) 5 (b) 2	equation of motion for the system described by the			
Hamiltonian H (q,p)?				
(a) $\dot{q} = \frac{\partial H}{\partial x}$, $\dot{p} = \frac{\partial H}{\partial q}$ (b) $-\dot{q} = \frac{\partial H}{\partial p}$, $\dot{p} = \frac{\partial H}{\partial q}$	(c) $\dot{q} = \frac{\partial H}{\partial p}$, $\dot{p} = -\frac{\partial H}{\partial q}$ (d) $\dot{q} = \frac{\partial H}{\partial p}$, $-\dot{p} = \frac{\partial H}{\partial q}$			
69. A system is described by the Lagrangian $L(r, \theta)$	$(\dot{r}, \dot{\theta}) = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 + \frac{1}{r}$			
Which one of the following is not true?				
(a) total energy of the system is conserved	(b) angular momentum of the system is conserved			
() A :- avalia coordinate	(d) linear momentum of system is conserved			
70 I amengian for simple harmonic oscillator with	frequency ω, mass m in one dimension is given by			
(a) $\frac{1}{2}m(\dot{x}^2 - \omega^2 x^2)$ (b) $\frac{1}{2}m(\dot{x}^2 + \omega^2 x^2)$	(c) $\frac{1}{2}m(\ddot{x} + \omega^2 x^2)$ (d) $\frac{1}{2m} + \frac{1}{2}m\omega^2 x^2$			
71 The statistical systems in which both energy an	d number of particles change are best described by			
(a) miara apponical ensemble theory (b) ca	nonical ensemble theory			
(c) grand-canonical ensemble theory (d) bo	th canonical as well as grand-canonical ensemble theory			
72. Given three isobars, namely ;; $^{25}_{11}Na$, $^{25}_{12}Mg$ and	d 25Al			
(a) $^{25}_{11}Na$ is stable and the other two are beta en	nitters			
(b) $^{25}_{12}Mg$ is stable and the other two are beta en	mitters			
(c) $^{25}_{13}Al$ is stable and the other two are beta em	itters			
(d) all nuclei are stable				
73. The rate of electron emission from 4 mg of $^{21}_{8}$	<i>Pb</i> with half-life 5 days is			
(a) 1.84×10^{16} (b) 1.84×10^{13} (c) 9.	2×10^{11} (d) 9.2×10^{16}			
74. The average velocity of nucleons inside the m	icleus s of the order of			
(c) 3 (b) 6 (c) 3	$\times 10^{6} \text{ m/s}$ (d) 6 X10 m/s			
(a) 3 x 10 m/s (b) 0 x 10 m/s (c) 5	2a, 3b and 6c along the axes where a, b, c are primitive			
vectors of the unit cell. The Miller indices the	given plane are			
(a) (1	23) (d) (213)			
(a) (321)	23)			
76. Origin of characteristic X-ray is	(b) inverse photoelectric effect			
(a) photoelectric effect	(d) Compton effect			
(c) electronic transitions within atoms	the direct basis vector \vec{a} is given by			
77. The relation of the reciprocal basis vector \vec{A} t	of the direct basis vector \vec{a} is \vec{g} .			
(a) $\vec{A} \cdot \vec{a} = 0$ (b) $\vec{A} \cdot \vec{a} = 2\pi$ (c) $\vec{A} \cdot \vec{a} = 2\pi$				
78. The electron velocity vF, at the Fermi surface	2 IS 1/3 1/3			
(a) $\hbar \left(\frac{3\pi^2 N}{V}\right)^{1/3}$ (b) $\frac{\hbar}{m} \left(\frac{3\pi^2 N}{V}\right)^{1/3}$ (c) $\frac{\hbar}{m}$	$\frac{1}{n} \left(\frac{3\pi N}{V} \right)^{1/3}$ (d) $\frac{\hbar}{m} \left(\frac{\pi^2 N}{V} \right)^{\frac{1}{3}}$			
79. The direction of propagation of electromagne	tic wave is given by			
(a) $\vec{E} \cdot \vec{B}$ (b) \vec{E} (c) \vec{B}	$\vec{E} \times \vec{B}$ (d) \vec{B}			
80. The divergence of the curl of a vector field is	VIDAY 708 801			
(a) a scalar (b) a vector (c) a				
81. In conductors, which condition will be true?				
(a) $\sigma\omega\varepsilon > 1$ (b) $\frac{\sigma}{(\omega\varepsilon)} > 1$	$(c)\frac{\sigma}{(\alpha c)} < 1$ (d) $\sigma \omega \epsilon < 1$			
(ωε)	(we)			

(a) 0, 1	(b) 0, -1	(c) 0, 2	(d) -3, 5	
84. The raising a	nd lowering of any $_{-}, L_{+}$ is equal to	gular momentum	operators are defined as L_{\pm}	$=$ Lx \pm iLy. The
(a) −2ħL_	(b) ħL_	(c) $\hbar L_{+}$	(d) -ħL_	
85. The bound stat	e energy for the state	e ψ _{5,4,2} (r,θ,□) in a	H-atom problem is given by	
(a) $-\frac{13.6}{5}eV$	(b) $-\frac{13.6}{25}eV$ (c)	$= 13.6 \times 5 eV$	(d) −13.6 x 25 eV	
			he kinetic energy to the poten	ntial energy of the
(a) 1/2	(b) 2 (c	2) -1/2	(d) - 2	
87. Considering th	ne nuclear mass finite	e, the Rydberg con	stant is maximum for	
(a) hydrogen at		(b) deuteriur		
(c) singly ioniz	ed helium atom	(d) doubly id	onized lithium atom	
in area to 2500 core = 10 kg	ergs/cm² is (giver	frequency =50 H	former, the hysteresis loop of z , density of iron = 7.5 g/cm ³	which is equivalent weight of the iron
(a) 5.985×10^2	J (b) 5.985 x 10^3 J	(c) 5.985 x 1	$0^4 \mathrm{J}$ (d) 5.985 x $10^5 \mathrm{J}$	
89. Given the trans	formation $u = x + y$,	v = x - y and $du dv$	y = k dx dy, the value of k is	
(a) 1	(b) -1 (c	2) 2	(d) 1/2	
90. If a^+ and a and	re creation and ann	ihilation operators	s for SHO, then which of the	e following is not
Hermitian oper	ator			Ü
(a) $aa^{+} + a^{+}a$	(b) $aa^{+} + a^{+}a$	(c) $i(a^+ - a)$	(d) $i(a^+ + a)$	
			A 35-100-00-10-00 11-00	

(b) refraction (c) total internal reflection (d) absorption

 $\begin{pmatrix} -3 \\ -6 \end{pmatrix}$ with one of the eigenvalues equal to -3, the other two eigenvalues

82. The phenomenon employed in the waveguide operation is

(a) reflection

are

83. Given the matrix $\begin{pmatrix} -2 & 2 \\ 2 & 1 \\ -1 & -2 \end{pmatrix}$